

**MASS-TRANSFER EFFICIENCY OF A SMALL-SIZE TEFLON BUBBLE-CAP TRAY**Peter S. PETROV<sup>a</sup> and Penka V. GENKOVA<sup>b</sup><sup>a</sup> Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria; e-mail: psp@adm1.uctm.acad.bg<sup>b</sup> Department of High Purity Substances, Faculty of Chemistry, Sofia University "St. Kl. Ohridski", 1126 Sofia, Bulgaria; e-mail: pvasileva@chem.uni-sofia.bg

Received May 14, 1997

Accepted October 5, 1998

The combined effect of flow conditions, geometry and physical properties on distillation efficiency of a newly constructed small-size Teflon bubble-cap tray for production of high-purity substances is experimentally investigated. The limits of vapour loading required for a steady hydrodynamic tray operation are found. The results evidence an influence of the liquid entrainment on plate efficiency at elevated superficial vapour velocities and higher downcomers. The comparison of the plate efficiency values determined experimentally with those from different correlations for large columns shows that the equation of MacFarland *et al.* and the point AIChE theoretical method are the best for predicting mass-transfer efficiency of the small-size bubble-cap Teflon tray used.

**Key words:** Plate efficiency; Small-size bubble-cap tray; Teflon column.

Mass-transfer efficiency is a basic parameter in the distillation column design and simulation. It depends on various factors, such as composition and properties of the fractionated mixture, flow conditions, type, construction details and size of the trays.

The contact devices intended for high-purity distillation are of the form and size that differ substantially from the conventional metal units met in industry. Their features are defined by the small diameter related to the low production capacity of high-purity substances. Their construction also strongly depends on the specific ways of machining the material used, *i.e.*, borosilicate glass, quartz or Teflon which determine the appropriate shape, thickness, mode of disposition and connection of column sections and internals.

In comparison with the case of the common large steel plates, the specifics of small-size tray geometry cause a change in the hydraulics of bubble contact and affect the tray efficiency. For small tray diameters and unimportant variation in the radial and axial concentration profile inherent to high-purity distillation, the point, plate and column efficiencies are approximately equal ( $E_{mv} \approx E_{mv} \approx E_0$ ). Several constructions of laboratory-scale glass plate columns are described in literature<sup>1</sup>. Nevertheless, no corre-

lation for plate efficiency in designing of small-size distillation columns has been proposed.

In a number of cases, in the production of equipment for precise separation, Teflon is preferable to glass or quartz for its bending and impact strength. So far, however, Teflon has been used to produce merely packings for small-scale columns. No information about constructions of Teflon trays and correlations of respective plate efficiencies are known to the authors.

The present work is devoted to :

- experimental analysis of the combined effect of flow conditions, geometry and physical properties on the distillation efficiency of a newly developed construction of the small-size Teflon bubble-cap tray ( $D = 80$  mm);
- finding the limits of vapour loading required for stable hydrodynamic conditions on the tray construction proposed;
- testing the published efficiency prediction methods against experimental plate efficiency data of the small-size Teflon tray construction elaborated.

## EXPERIMENTAL

Tray efficiency was studied experimentally by using the model binary mixture hexane–tetrachloromethane, both components of reagent grade.

The experimental set-up is illustrated in Fig. 1. The Teflon tray 4 under investigation was of the bubble-cap type with internal downcomer. Details and geometrical parameters of the tray are shown at the right-hand side of Fig. 1. Another Teflon tray 3 (without a cap) at tray spacing of 40 mm was mounted over the tray 4 for vapour condensate sampling. The 5-litre reboiler 6 was made of glass

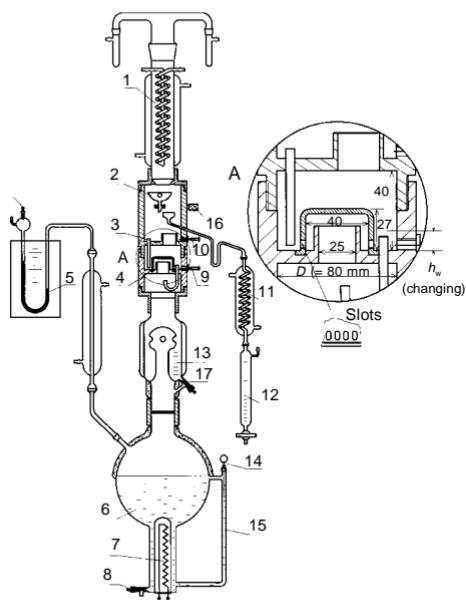



FIG. 1

Experimental Set-up: 1 Total reflux condenser; 2 automatic reflux divider; 3 Teflon tray without cap; 4 Teflon tray under investigation; 5 pressure drop contact manometer for control; 6 reboiler; 7 electric heater; 8 Teflon valve; 9, 10 sampling syringes; 11 distillate cooler; 12 measuring cup for vapour condensate flow rate; 13 measurement device for liquid flow rate; 14 platinum electric resistance component; 15 thermosiphon circulation unit; 16 solenoid coil; 17 Teflon valve. Number of slots: 40, slot width 2 mm, slot height 6 mm

(Simax) with the built-in electric heater 7 and the thermosiphon circulation unit 15. The total reflux condenser 1 is a water-cooled helical-type heat exchanger made of glass and open to the atmosphere.

The liquid temperature in the reboiler was measured by the platinum electric resistance component 14 giving an accuracy of 0.1 °C. Different heating intensities corresponding to different column vapour loadings were obtained by changing the power input to the electric heater. The control of vapour loading was carried out by means of the pressure drop contact manometer 5 connected with the electric heater by means of a relay. Below the total reflux condenser 1, the automatic reflux divider 2 with the solenoid coil 16 was mounted to allow the measurement of the volumetric condensate flow rate  $Q_L$  by collecting in the measuring cup 12. The volumetric reflux flow rate measured directly by the device 13, after closing up the Teflon valve 17, is equal to the volumetric condensate flow rate  $Q_L$  at total reflux ( $L/V = 1$ ) and adiabatic conditions.

The bottom liquid sampling was carried out by Teflon valve 8. The tray liquid sampling was accomplished by the syringe 9. Sample of vapour condensate was taken by the syringe 10.

The experimental conditions obtained by changing the values of the variables considered are given in Table I. The study included variations of:

1. Concentration  $x_f$  of the more volatile component  $C_6H_{14}$  in the initial feed mixtures from 0.06 to 0.9 mole fraction. This change leads to different values of the physical properties of vapour and liquid on the plate investigated in the limits:

$$\mu_L = 2.06 \cdot 10^{-3} - 4.31 \cdot 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1};$$

$$\rho_L = 652.4 - 1342.8 \text{ kg m}^{-3};$$

$$\sigma_L = 1.37 \cdot 10^{-2} - 1.92 \cdot 10^{-2} \text{ kg s}^{-2};$$

$$\mu_V = 7.66 \cdot 10^{-6} - 1.08 \cdot 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1};$$

$$\rho_V = 3.35 - 5.07 \text{ kg m}^{-3};$$

$$\alpha = 1.15 - 1.62.$$

The properties of the pure components were obtained from literature data or empirical equations as a function of temperature<sup>2,3</sup>. The properties of the binary mixtures were calculated by means of generally accepted additive correlations.

2. Superficial vapour velocity  $w_V$  in limits of 0.06–0.3 m s<sup>-1</sup>. The superficial vapour velocity  $w_V$  was computed from the volumetric vapour flow rate  $Q_V$  ( $Q_V = Q_L \rho_L / \rho_V$ ;  $w_V = Q_V / A$ ).

3. Weir height  $h_w$  from 6 to 21 mm. The change of the weir height  $h_w$  was realized by vertical moving and fixing of the downcomer at different levels.

The experiments were carried out at total reflux, at atmospheric pressure and adiabatic conditions. Each experiment was of about 5 h duration to achieve steady-state conditions. After this period, liquid samples of about 5 ml were withdrawn from the sampling points 8, 9, 10 (see Fig. 1), and the concentrations of  $C_6H_{14}$  in the bottom liquid ( $x_b$ ), in the tray liquid ( $x_p$ ), and in the vapour condensate ( $x_d$ ) were determined. The compositions of the liquid samples were analyzed using a Pulfrich refractometer with standard calibration, giving an accuracy of  $\pm 0.001$  mole fraction.

These compositions were used to determine the Murphree vapour plate efficiencies for various experimental conditions, as:

$$E_{mV}^{\exp} = \frac{y_{out} - y_{in}}{\frac{*}{y_{out} - y_{in}}} , \quad (I)$$

where  $y_{\text{out}} = x_d$  and  $y_{\text{in}} = y_b^* = k_b x_b$  are the mole fractions of the more volatile component  $C_6H_{14}$  in the vapour leaving and entering the tray investigated;  $y_{\text{out}}^* = k_p x_p$  is mole fraction of  $C_6H_{14}$  in the vapour in equilibrium with the liquid leaving the tray.

The equilibrium constant values  $k_b$  and  $k_p$  for the measured concentrations of more volatile components  $x_b$  and  $x_p$  were evaluated by using the vapour-liquid equilibrium data<sup>4</sup> tested for thermodynamic consistency (Herington test) and then correlated using the Wilson model for calculating the activity coefficients.

## RESULTS AND DISCUSSION

The Murphree vapour plate efficiency values, obtained from the experiments, are presented in Table I. The results of the repeated runs 24 to 29 showed good reproducibility:

$$\text{RMSD} = \left[ \left( \sum_{j=24}^{29} (\bar{E}_{\text{mV}}^{\text{exp}} - E_{\text{mV}}^{\text{exp}})_j^2 \right) / 6 \right]^{1/2} = \pm 0.0057 . \quad (2)$$

Figure 2 shows the effect of superficial vapour velocity  $w_V$  on the Murphree efficiency  $E_{\text{mV}}^{\text{exp}}$  of the small-size Teflon plate investigated. The scatter in these results is caused by the influence of varying mixture composition and weir height. The experimental points 8 and 16 are not included in Fig. 2 because the low values of the plate efficiency are obtained at quite high downcomers and high vapour velocities. It can be seen that in limits of vapour velocity  $w_V$  from 0.08 to 0.27  $\text{m s}^{-1}$ , where the plate is in regime of stable operation (above the weep point and below the entrainment point), the efficiency  $E_{\text{mV}}^{\text{exp}}$  varies within the range of 0.6–0.8. The experimentally recorded decrease of the plate efficiency at vapour velocities above 0.15  $\text{m s}^{-1}$  may be explained by an influence of the drop entrainment between trays.

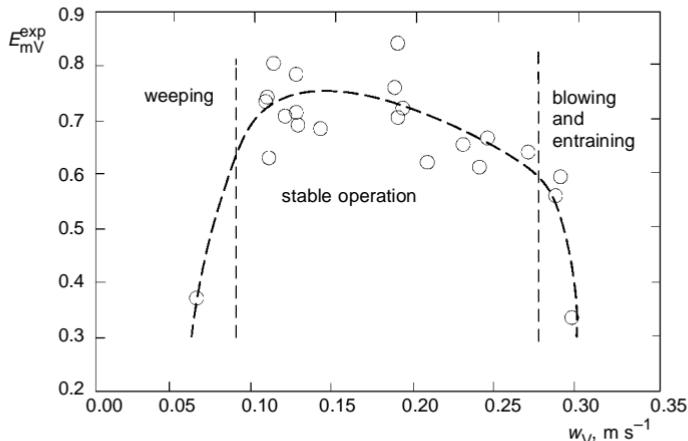



FIG. 2  
Effect of superficial vapour velocity  $w_V$  on the plate efficiency  $E_{\text{mV}}^{\text{exp}}$

The interpretation of the effect of drop entrainment on mass-transfer efficiency is also supported by the experimental results shown in Fig. 3. Tracing different ranges of superficial vapour velocity, the effect of weir height  $h_w$  on the measured plate efficiency is

TABLE I  
Experimental conditions and Murphree vapour plate efficiency values

| $j$             | $x_f$<br>mole fraction | $x_p$<br>mole fraction | $w_v$ , m s <sup>-1</sup> | $h_w$ , mm | $E_{mV}^{\text{exp}}$ |
|-----------------|------------------------|------------------------|---------------------------|------------|-----------------------|
| 1 <sup>a</sup>  | 0.231                  | 0.293                  | 0.111                     | 10.0       | 0.803                 |
| 2 <sup>a</sup>  | 0.231                  | 0.298                  | 0.125                     | 10.0       | 0.783                 |
| 3 <sup>a</sup>  | 0.240                  | 0.314                  | 0.125                     | 8.8        | 0.713                 |
| 4 <sup>a</sup>  | 0.231                  | 0.298                  | 0.268                     | 10.0       | 0.640                 |
| 5               | 0.231                  | 0.297                  | 0.285                     | 10.0       | 0.559                 |
| 6               | 0.240                  | 0.297                  | 0.288                     | 8.8        | 0.594                 |
| 7 <sup>a</sup>  | 0.240                  | 0.330                  | 0.126                     | 17.2       | 0.690                 |
| 8               | 0.240                  | 0.301                  | 0.247                     | 17.2       | 0.326                 |
| 9 <sup>a</sup>  | 0.744                  | 0.781                  | 0.106                     | 10.0       | 0.733                 |
| 10 <sup>a</sup> | 0.742                  | 0.782                  | 0.108                     | 8.8        | 0.629                 |
| 11 <sup>a</sup> | 0.747                  | 0.776                  | 0.243                     | 10.0       | 0.666                 |
| 12 <sup>a</sup> | 0.747                  | 0.777                  | 0.228                     | 10.0       | 0.654                 |
| 13 <sup>a</sup> | 0.742                  | 0.775                  | 0.238                     | 8.9        | 0.612                 |
| 14 <sup>a</sup> | 0.742                  | 0.775                  | 0.107                     | 17.1       | 0.741                 |
| 15 <sup>a</sup> | 0.742                  | 0.775                  | 0.118                     | 17.1       | 0.706                 |
| 16              | 0.742                  | 0.778                  | 0.231                     | 17.1       | 0.360                 |
| 17              | 0.490                  | 0.552                  | 0.295                     | 13.2       | 0.335                 |
| 18              | 0.490                  | 0.575                  | 0.063                     | 13.2       | 0.371                 |
| 19 <sup>a</sup> | 0.500                  | 0.554                  | 0.186                     | 20.4       | 0.759                 |
| 20 <sup>a</sup> | 0.492                  | 0.547                  | 0.188                     | 6.0        | 0.704                 |
| 21 <sup>a</sup> | 0.894                  | 0.908                  | 0.188                     | 13.0       | 0.840                 |
| 22 <sup>a</sup> | 0.894                  | 0.906                  | 0.140                     | 13.0       | 0.683                 |
| 23 <sup>a</sup> | 0.062                  | 0.101                  | 0.206                     | 13.0       | 0.621                 |
| 24 <sup>a</sup> | 0.492                  | 0.554                  | 0.191                     | 13.2       | 0.721                 |
| 25 <sup>b</sup> | 0.492                  | 0.554                  | 0.192                     | 13.2       | 0.718                 |
| 26 <sup>b</sup> | 0.492                  | 0.553                  | 0.190                     | 13.2       | 0.732                 |
| 27 <sup>b</sup> | 0.492                  | 0.554                  | 0.190                     | 13.2       | 0.724                 |
| 28 <sup>b</sup> | 0.492                  | 0.553                  | 0.190                     | 13.2       | 0.714                 |
| 29 <sup>b</sup> | 0.492                  | 0.553                  | 0.192                     | 13.2       | 0.719                 |

<sup>a</sup> Experimental points in the region of stable operation. <sup>b</sup> Repeated runs.

ciency  $E_{mV}^{\exp}$  is shown. It is observed that the increase in the weir height for vapour velocities between 0.1 and 0.2  $\text{m s}^{-1}$  leads to a slight enhancement of mass-transfer plate efficiency. In contrast, while considering vapour velocities approaching the upper limit (0.3  $\text{m s}^{-1}$ ), a similar trend to those shown in Fig. 2 is observed, that is, a decrease in the plate efficiency at increasing weir height. This trend could be again explained by an increased amount of the liquid entrained by the vapour flow at elevated vapour velocities and higher downcomers.

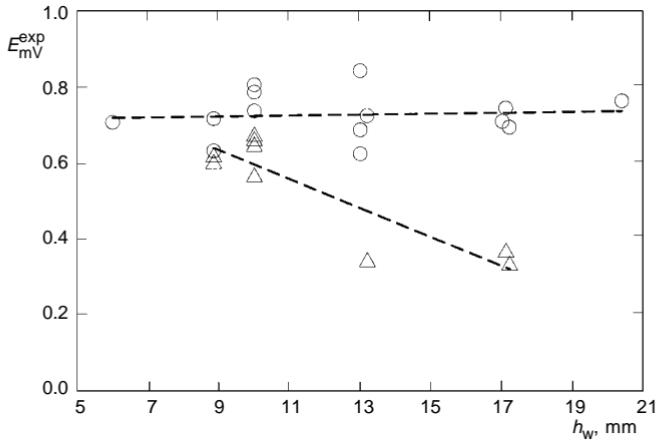



FIG. 3

Effect of weir height  $h_w$  on the experimental plate efficiency  $E_{mV}^{\exp}$  for different ranges of superficial vapour velocity.  $\Delta w_V \in (0.1-0.2 \text{ m s}^{-1})$ ,  $\bigcirc w_V \in (0.2-0.3 \text{ m s}^{-1})$

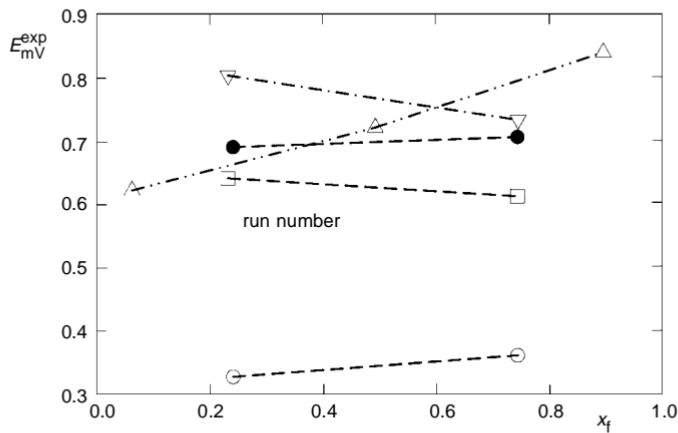



FIG. 4

Effect of the concentration of more volatile component  $x_f$  on the plate efficiency  $E_{mV}^{\exp}$ . Run numbers: ● 7, 15; ○ 8, 16; □ 4, 13; ▽ 1, 9 and Δ 21, 23, 27

The attempts to use the Hunt correlation<sup>5</sup> for drop entrainment calculations at runs 8, 16 and 17 (in Table I) did not yield the expected results. The calculated values of liquid entrained net fractions are quite small – 0.018–0.029 kg liquid per kg vapour.

Figure 4 compares the experimental values of the plate efficiency  $E_{mV}^{\exp}$  in experiments where  $w_V$  and  $h_w$  are similar to each other – runs 1 and 9; 4 and 13; 7 and 15; 8 and 16; 21, 23 and 27 (see Table I). It can be seen that an increase in  $C_6H_{14}$  mole fraction in mixture studied (which decreases mixture viscosity, density and increases liquid surface tension) leads to different trends of change in the plate efficiency – increasing (runs 21, 23 and 27), decreasing (runs 1 and 9) or fairly constant (runs 4 and 13; 7 and 15; 8 and 16).

These contradictory results could be explained in terms of a prevailing influence of the flow conditions and tray geometry over the effect of physical properties on the efficiency of the plate investigated.

Various efficiency prediction methods summarized by Vital *et al.*<sup>6</sup> were tested against experimental values of the plate efficiency for the small-size Teflon bubble-cap tray proposed. The experimental plate efficiencies and those calculated by the equations are compared for the experimental points falling within the range of stable tray operation (denoted with asterisks in Table I).

The MacFarland equation<sup>7</sup> and the point AIChE method<sup>8</sup> without correction for the imperfection of liquid phase mixing, both accounting for the combined effects of the mixture physical properties, the tray geometry, and the flow conditions, are most reliable in predicting the plate efficiency of the small-size Teflon bubble-cap tray.

Much lower values of plate efficiency predicted and great deviations with respect to the experimental values are obtained by using the equations of Walter and Sherwood<sup>9</sup>, and Bakowski<sup>10</sup>.

## CONCLUSIONS

On the basis of the present investigation, the following may be concluded:

- The experimental analysis indicates that, at vapour superficial velocities of 0.08 to 0.27  $m\ s^{-1}$ , the values of the Murphree plate efficiency  $E_{mV}^{\exp}$  are relatively high and vary within the range of 0.6–0.8 for the small-size Teflon bubble-cap tray ( $D = 0.08\ m$ ) investigated.

- The tendency of decreasing the plate efficiency for this small-size Teflon tray with a tray spacing 0.04 m at superficial vapour velocities above 0.15  $m\ s^{-1}$  may be caused by the influence of drops entrainment between plates. The effect of the flow conditions and the tray geometry upon the plate efficiency is much greater than the influence of the mixture physical properties, at least for the system studied.

- The plate efficiency is predicted most reliably by the equation of MacFarland<sup>7</sup> and the point AIChE method<sup>8</sup>. The equations by Walter and Sherwood<sup>9</sup>, and Bakowski<sup>10</sup> are most unsuitable.

## SYMBOLS

|                       |                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------|
| $A$                   | cross-sectional area of column, $\text{m}^2$                                                |
| $D$                   | tray diameter, m                                                                            |
| $E_{\text{mv}}$       | Murphree vapour point efficiency                                                            |
| $E_{\text{mV}}$       | Murphree vapour plate efficiency                                                            |
| $\bar{E}_{\text{mV}}$ | average Murphree vapour plate value of the repeated runs                                    |
| $E_0$                 | overall column (plate) efficiency                                                           |
| $h_w$                 | weir height, m                                                                              |
| $k_b, k_p$            | equilibrium constants for more volatile component                                           |
| $L$                   | liquid molar flow-rate, mole $\text{s}^{-1}$                                                |
| $Q_L$                 | liquid volumetric flow-rate, $\text{m}^3 \text{s}^{-1}$                                     |
| $Q_v$                 | vapour volumetric flow-rate, $\text{m}^3 \text{s}^{-1}$                                     |
| RMSD                  | Root-Mean-Square Deviation, Eq. (2)                                                         |
| $V$                   | vapour molar flow-rate, mole $\text{s}^{-1}$                                                |
| $w_v$                 | superficial vapour velocity, m $\text{s}^{-1}$                                              |
| $x$                   | mole fraction of more volatile component in the liquid phase                                |
| $y$                   | mole fraction of more volatile component in the vapour phase                                |
| $y^*$                 | mole fraction of more volatile component in the vapour phase in equilibrium with liquid $x$ |
| $\alpha$              | relative volatility of more volatile component                                              |
| $\mu_L$               | liquid viscosity, $\text{kg m}^{-1} \text{s}^{-1}$                                          |
| $\mu_v$               | vapour viscosity, $\text{kg m}^{-1} \text{s}^{-1}$                                          |
| $\rho_L$              | liquid density, $\text{kg m}^{-3}$                                                          |
| $\rho_v$              | vapour density, $\text{kg m}^{-3}$                                                          |
| $\sigma_L$            | liquid surface tension, $\text{kg s}^{-2}$                                                  |
| Subscripts            |                                                                                             |
| $b$                   | bottom                                                                                      |
| $d$                   | distillate                                                                                  |
| $f$                   | feed                                                                                        |
| $p$                   | plate under investigation                                                                   |
| Superscript           |                                                                                             |
| $\text{exp}$          | experimental value                                                                          |

## REFERENCES

1. Krell E.: *Handbuch der Laboratoriumsdestillation*, 3rd ed. VEB Deutscher Verlag der Wissenschaften, Berlin 1976.
2. Reid R. C., Prausnitz J. M., Sherwood T. S.: *The Properties of Gases and Liquids*, 3rd ed. McGraw-Hill, New York 1977.
3. Nikolskii B. P. (Ed.): *Spravochnik Khimika*, Vol. I. Khimiya, Moscow 1963.
4. Rodger A. J., Hsu C. C., Furter W. F.: *J. Chem. Eng. Data* **1969**, 14, 362.
5. Hunt C., Hanson D. N., Wilke C. R.: *AIChE J.* **1955**, 1, 441.
6. Vital T. J., Grossel S. S., Olsen P. I.: *Hydrocarbon Process.* **1984**, 63 (11), 147.
7. MacFarland A., Sigmund P. M., van Winkle M.: *Hydrocarbon Process.* **1972**, 51, 111.
8. *Bubble Tray Design Manual*. American Institute of Chemical Engineers, New York 1958.
9. Walter F., Sherwood T. K.: *Ind. Eng. Chem.* **1941**, 33, 493.
10. a) Bakowski S.: *Br. Chem. Eng.* **1963**, 6, 384; b) Bakowski S.: *Br. Chem. Eng.* **1963**, 7, 472.